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Abstract. Theoretical description of Brillouin scattering from shear horizontal (SH) acoustic 
surface phonons in a generic multilayer SfNCtW with arbitrarily smooth interfa- is given. To 
evaluate the p-s Brillouin cross-section, the SH phonon spec". the transmitted moth-order 
field and the fluctuating polarization vector radiating the Brillouh light are computed nuneridly 
by means of a method fhat can take into account any depth profiles of eluti$ elasto-optic and 
dielectric properties of the medium including electromagnetic absorption. As an application the 
case of a silicon on insulator structure with both sharp and diffuse interfaces is illustrated. 

Brillouin scattering of laser light has been used in the last twenty years to investigate the 
surface acoustic phonon spectrum of opaque and semi-opaque materials. For a review see 
e.g. [l]. Most of the studies have dealt with sagittal modes but a few theoretical papers 
[Z-51 and one experimental paper [6] considered shear horizontal (SH) phonons. 

More recently two papers [7,8] have appeared treating the scattering from SH phonons 
in silicon on insulator (sol) structures. These works showed and explained theoretically 
the existence and the dispersion properties of a surface mode localized in the buried silica 
layer and of a new type of pseudosurface mode quasilocalized in the top silicon layer. The 
examined structures had rather sharp interfaces between silicon and silica, the transition 
region being of the order of a few nanometres, but other SOI structures can have diffuse 
(smooth) interfaces between silicon and the buried silica film. Much more generally in the 
present paper we have in mind all the semitransparent layered structures exhibiting a gradual 
unidimensional (2) inhomogeneity and possessing both a strong elasto-optic coupling and 
a high subsurface localization of SH acoustic phonons so as to show detectable inelastic 
light scattering signals. The existing algorithms for computing Brillouin cross sections (p 
p, ps) in layered media assume that (i) all the material properties are space independent 
within each individual layer and (ii) the displacement vector field and the stress tensor 
are continuous across the ideally sharp interfaces connecting all neighbouring layers. Here 
we adopt a different and quite general approach, which is equivalent to the others in the 
limit of sharp interfaces. We consider the whole medium as a thick slab with two free 
surfaces and depth-dependent physical properties in a limited subsurface region at one 
side. The inhomogeneous portion of the system is described, giving the z profiles of the 
elastic coefficients (see figure l),  density, dielectric function and elasto-optic coefficients. 
AI1 the functions of z are required to become smoothly constant in the 'bulk' portion of 
the system (substrate). In this way the whole phonon spectrum is discrete but becomes 
quasicontinuous beyond the transverse threshold of the substrate provided the slab is thick 
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enough. In this way p-s Brillouin scattering of light from SH phonons is envisaged as a 
useful non-deshuctive spectroscopic tool to study the nature of smooth interfaces in some 
types of heteroshucture. For the sake of simplicity the lreatment is limited to cubic crystals 
with [Ool] surfaces and phonon propagation is considered only along (100) and (110) 
directions because of the decoupling of sagittal from SH phonon motion. 

3 0  ~ m 500 6W 700 8W 

Depth [nm] 
Figwe 1. A typical conrinuous deplh profile of one of the properties of lhe medium whose 
phonons scatter the light Two interfaces are evident wilh WO different degrees of smoothness. 
The medium is made up of two layers on a substrate all with different bulk elastic properties. 

For the general propagation properties of elastic SH waves in layered media the reader 
is referred to [9]. As a consequence of the translational invariance of our system in the 
x direction parallel to the surface, we define the (0.q11) 'Fourier component of the uy SH 
displacement field, being the parallel wavevector 411 = q11ZXx. as 

u Y ( w  411: x ,  z. 0 = Q b .  pll)@y(w 411. z)expIi(qlln - 4 1  (1) 

where Q(o, 411) is the normal coordinate of the SH phonon (U, 411). The mode z profiles 
q5y(w, 411, z )  are the real eigenfunctions, corresponding to the real eigenvalues 3 = d(q11). 
of a self-adjoint Liouville equation [IO] 

(d/dz)[Cdz) d&@, 411. z)/dz] + [P(z)w' - CU(Z)~;I~~~Y(O, 411. Z) = 0. (2) 

(2) is written here for the (100) direction. For details see [71 and [81 where the equation 
for the (110) case is also given. We assume that the illuminated surface coincides with 
the z = 0 plane and that the z axis points downwards in the medium. In the example 
presented below p(z) and C&) (density and elastic constant) have a hyperbolic tangent 
shape at each interface, but our method is absolutely general allowing for any type of z 
profile. Using a slab approximation we can solve the above spectral problem in complete 
generality. Imposing stress-free boundary conditions at the outer surfaces and using suitable 
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normalization conditions [7,8] we have always a well posed Sturm-Liouville eigenvalue 
problem [lo]. 

Thc eigenfunctions of (2), needed to compute the p s  Brillouin cross-section (see below), 
can be computed numerically using the NAG routine DOZKEF [ll]. 

We assume that the free surface of the medium is illuminated by a monochromatic 
plane p wave with circular frequency 00 = 2rnc/Lo. 4 is the corresponding wavelength in 
vacuum and the electric field is ( E x ,  0, ET). In the absence of thermal fluctuations, cubic 
media would have isotropic dielectric properties. It is possible to account for the perturbation 
caused by long-wavelength acoustic phonons by means of an anisotropic susceptibility, that 
is, a second-order tensor, the components of which are linear functions of the fluctuating 
elastic strains [I]. Because of the linearity of the Maxwell equations and the smallness of the 
thermal elastic strains in thermodynamic equilibrium conditions the electric field scattered 
by fluctuations can be computed by first order perturbation theory (Born approximation in 
scattering theory) [12]. 

At zeroth order we compute the elechic field transmitted in the medium Ewo(x, z) in 
terms of the y component of the magnetic induction field B p ( x ,  z )  = e'*IIX)B(z), where 
kll = (2n/h) sin& = (OO/C) sine, is the component parallel to the surface of the wavevector 
of the incident wave and 6'i is the incidence angle. It is shown [I31 that B(z )  obeys the 
following differential equation: 

(d/dz)([l/€(z)] dB/dz) + ( o ~ / c ~  - k i / < ( z ) ) B  = 0. (3) 

E(Z) is the z profile of the complex relative dielectric function of the structure at frequency 
00. In the vacuum (z < 0) above the surface B ( z )  = ( E ~ / c ) ( e ' " ~ ~ )  - rpe-i@Lz)), where 
Eo is the electric field amplitude of the incident p wave, k~ = (og/c) cos the component 
perpendicular to the surface of the wavevector of the incident wave and rp the reflection 
coefficient. We aIlow for a generic z profile of a (in general) complex 6 and impose the 
condition that the electromagnetic field vanish at plus infinity because of the absorbing 
substrate. We integrate (3) numerically using the NAG [l 11 FORTRAN routine DMHBF which 
can also evaluate rp self-consistently. Once B(z)  has been computed E F ( x ,  z) and E? ( x ,  z) 
can also be obtained [13]. At first order in perturbation theory the elasto-optic.coupling is 
described by a fluctuating polarization vector radiating the scattered light. For p s  scattering 
from SH phonons this has only one component (P~WI)R which is written [7] in terms of the 
fluctuating thermal elastic strains uyx = f[auy(o,, qll)/ax] and uyz = t[au,(o,, ql l ) /az] .  

We write (P?)R in the compact form (for the sake of simplicity we report only 
the complex anti-Stokes term, radiating at the circular frequency os = 00 + ou(qll), 
corresponding to the annihilation of pr-xisting phonons of the normal mode a) 

(P,"): = Qb,, qll)n,(zlwo,kll; U,, qll)eiuIL-MII)x (4) 

where 

(5 1 

are spectral weights depending on both the phonon mode profiles and the zeroth-order 
transmitted electromagnetic field in the medium. b ( z )  is the (generic) depth profile of the 
sole elasto-optic coefficient involved for (100) 171. 
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Using the found (Pp); in the Maxwell equations, we obtain an inhomogeneous wave 
equation for the radiation of the scattered field component z ,  t )  = E ; ( Z ) $ ~ ~ ' - ~ ~ ' )  in 
the medium (z z 0), with ki = kll + 411: the rule expressing the conservation of parallel 
wavevector for an anti-Stokes event. This wave equation is formally identical to that used 
in [8] for the sharp-interface case, which now has to be integrated in the whole medium with 
continuously varying depth profiles. In this way the problem is reduced to the determination 
of E;(O-) ~= E,U(O+) = E;(O) (at the upper surface), which, propagated in vacuum at the 
observation point, gives the scattered amplitude.  this^ can be accomplished, in our model, 
by means of numerical integration of the equation in question. E,U(z) in  the medium can be 
found using the NAG FORTRAN routine DOZHBF 1111 where one has to fix the infinitesimal 
initial values (at plus infinity) of the scattered field and of its z derivative. To obtain the total 
fluctuating scattered field component (w,  kS), one has to sum over all CY values (the whole 
SH phonon spectrum at fixed 411). Finally we find the differential scattering cross-section 
for anti-Stokes Brillouin backscattering from SH phonons as 

where the coefficients A, are proportional to E,U(O). Detailed expressions are given 
elsewhere 1141. 

As an application we present some instances of ps Brillouin cross-sections for scattering 
from SH phonons in structures consisting of a silicodsilica bilayer on an Si(OO1) substrate, 
allowing for the existence of (different) smooth interfaces between silicon and silica. This 
choice has been motivated as described in the inu,oduction. 

The functions describing the scattering properties of the medium have a local hyperbolic 
tangent profile at each interface. For example, to describe the density profile in a system 
consisting of a single silicon/silica bilayer on a silicon substrate we adopt a p(z) of the type 

where PI and p2 are, respectively, the mass density of bulk silicon and silica; dl = d ,  
dz = d + L are, respectively, the depths of the ideally sharp first and second interfaces; 
and SI and S2 characterize the degree of smoothness of the real interfaces. In this particular 
case one can imagine that the transition layers of thickness 6 are constituted by SOz with 
x varying with z between zero and two. 

= 
514.5 nm, typical of Ar lasers used in Brillouin spectroscopy. The physical properties 
of bulk silica and silicon are the same as used in 181. The theoretical cross sections are 
convoluted with a Lorentzian of 200 MHz width to account for the finite experimental 
spectral resolution. As a general observation we stress that, while the velocity of sound is 
less in silica than in silicon, and so the acoustic phonons tend to get trapped within the silica 
layers, the elasto-optic coupling is strong in silicon but negligible in silica, Thus intense 
signals originate from the subsurface silicon layers where the nearby silica layers induce 
appreciable localization of the acoustic modes [7,8]. 

Figure 2 shows the differential scattering cross sections for 30" backscattering in 
different silicalsilicon structures. 

In figure 2(a) the effect of the presence of an imperfect silicon film at the surface 
of a simple SO1 structure is simulated reducing the k44 of the upper silicon by 20%. Here 

In our computations the wavelength of the light incident onto the medium is 



3 

2.5 

r 2 -  
? c 
._ I 
d 
B 

1.5 

YI 

L795 

.5 

~ (Q) .. , .  
I ,  
1 .  I .  , :~ . , , , .  . . . . . . .  
I ,  I ,  

- 
: . .  r \  

. . . . . . . . . . . . . . . . . .  

: 
. . .  \ . . . . .  ~ ................ - 

! #  (a) 
2.5 

. ,  ,. ' 

. . . . .  . . . . . . . . . . . . . .  . -  ; \ 
: i  : :  
i i  

2 -  

: 
: I .  

.......... . . . . . . . .  
- =! a 1.5. , , ,  , ' .  , , . , . : : ,  , 

c 

d = 350 nm and L = 110 nm. In this case rather sharp interfaces 81 = 1 nm, 82 = 1 nm are 
assumed. A remarkable enhancement of the peak is evident corresponding to the pseudo- 
Love wave, and a drastic reduction of the peak (this peak is no longer visible) corresponding 
to the Love wave (dashed line) with respect to the case of perfect silicon at the top (solid 
line). 

It is possible to explain the above facts as follows. If we observe the mean square 
polarization radiating the Brillouin light at the frequency of the Love wave (figure 3(u)), 
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Figure 3. The mean square polarization dia l ing the Bdllouin light against L at the frequency 
of different SH waves: (a) for the Love wave of figure 2(a) (first peak); perfed top silicon (solid 
line); imperfect top silicon (dashed l ie);  (b) for the Lave wave of figure 2(b) (first peak); with 
Iwo sharp interfaces (solid line); with the second interface smooth (dashed line). 

we see that it is confined in the top silicon and the silica layers and, therefore, it responds 
strongly to the great decrease of k44 in the subsurface silicon layer. W e  also stress that 
the results shown by the solid lines differ from the ideally sharp interface case presented 
in [SI, where 6 = 0. In that ideal case the first peak is higher than in the present case. 
The differences are hidden in the electromagnetic part of the computation while the phonon 
specmm does not change appreciably. 

Figure 2(6) refers to the same reference structure as figure Z(u) (the same L and d )  but 
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with perfect materials. The solid line is the same as in figure 2(u) while the dashed line 
refers to the case 61 = 1 nm, 62 = 40 nm: that is, the second interface is imperfect (quite 
broad). 

It can be seen that the peak corresponding to the Love wave is practically invisible, when 
the second interface is smeared out (dashed line), if it is compared to the case with two sharp 
interfaces (solid lie). This is not understandable by simply analysing the corresponding 
polarization profiles (figure 3(b)) as in the previous case. Here a major role is played by the 
propagation of the scattered light back through the layered medium. In fact, in the case of 
sharp interfaces [SI this so1 structure presents a high transmissivity in the frequency band 
of the two SH modes, but, as the smoothness of the interfaces increases, this peculiar feature 
is destroyed and the light scattered by the Love mode is filtered out. 

57w, I 

.... + ..... ..j ....... ,; ............ 

49Ml}... ..... i ............. I , ,  ............. ~ ................................. .... ..\ . .  

48001 I 
0.008 0.01 0.012 0.014 0.0IV 0.018 0.02 0.022 0.024 

lhlm 
Figure 4. The dispersion relations for the Love wave in the sharp(& = 62 = 1 nm: salid line) 
and smooth-(& = 62 = 20 nm: dashed line) interface cases. 

In figure 4 we show the dispersion curves for Love waves in the sharp- (solid line) and 
smooth- (dashed line) interface cases. It is seen that in the latter case the phase velocity of 
the waves is higher. This is due to the fact that the modes are less confined in the buried 
silica layer and extend more in the surrounding silicon, whose sound velocity is bigger. In 
this case the amount of the above effect at large q11 values is big enough to be detected 
experimentally. 

As a last example of the application of our method, in figure 5 we illustrate the behaviour 
of the modulus of the reflection coefficient as a function of the degree of smoothness of 
interfaces in a simple SOI structure compared to the case of semi-infinite silicon. 

In conclusion, we have presented the scheme of computation of the cross-section for 
Brillouin scattering of light by SH surface acoustic phonons for a general layered structure 
with arbitrarily smooth interfaces. An example concerning imperfect silicon on insulator 
structures has been illustrated. We think we have demonstrated the possibility of using 
our numerical method for complicated systems for which even a semi-analytic study is 
impossible. 
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incidcnce aiiglc 

Figure 5. The modulus of the reflection eoeffiuent rp against incidence angle: +, semi-infinite 
silicon; -, the Same so1 Structure as in figure X a )  (61 = 62 = 1 om); solid line, lhe same sol 
smcture as in figure Z(n) (8, = 62 = 5 nm). 
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